Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Adv Mater ; : e2314054, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573654

RESUMO

A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g-1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g-1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g-1 and remarkable high-rate capability, achieving 882 mA h g-1 at 10 000 mA g-1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.

2.
Nano Lett ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630980

RESUMO

Tuning electronic characteristics of metal-ligand bonds based on reaction pathways to achieve efficient catalytic processes has been widely studied and proven to be feasible in homogeneous catalysis, but it is scarcely investigated in heterogeneous catalysis. Herein, we demonstrate the regulation of the electronic configuration of Ir-O bonds in an Ir single-atom catalyst according to the borane activation mechanism. Ir-O bonds in Ir1/Ni(OH)x are found to be more electron-poor than those in Ir1/NiOx. Despite the mild solvent-free conditions and ambient temperature, Ir1/Ni(OH)x exhibits outstanding performance for the hydroboration of alkenes, furnishing the desired alkylboronic esters with a turnover frequency value of ≤3060 h-1 and 99% anti-Markovnikov selectivity, which is significantly better than that of Ir1/NiOx (42 h-1). It is further proven that the more electron-poor Ir-O bonds as active centers are more oxidative and so benefit the activation of the H-B bond in the reductive pinacolborane.

3.
Inorg Chem ; 63(15): 6948-6956, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38575907

RESUMO

Conductive metal-organic frameworks (cMOFs), which have high porosity and intrinsic electron conductivity, are regarded as ideal candidates for electromagnetic wave (EMW) absorption materials. Controlling the nanostructure of absorbers may be one of the effective strategies to improve the electromagnetic wave (EMW) absorption performance. Herein, a series of conductive Cu-HHTP MOFs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenyl hydrates) with different nanostructures or crystal morphologies were successfully synthesized by using different structural inducers to regulate the changes in the morphology, thereby improving the EMW absorption performance. Specifically, when ammonia was used as an inducer, the obtained A-Cu-HHTP with a nanosheet structure exhibited excellent EMW absorption performance. The minimum reflection loss (RLmin) can reach -51.08 dB at 7.25 GHz with a thickness of 4.4 mm, and the maximum effective absorption bandwidth (EAB) can cover 5.73 GHz at 2.5 mm. The influence of the nanostructures of the cMOFs on the dielectric and EMW absorption performance was clarified. The nanosheet structure of A-Cu-HHTP increases its specific surface area, which expands multiple scattering and reflection paths of incident EMW; Meanwhile, the unique structure facilitates the formation of more heterogeneous interfaces, optimizing impedance matching. The significant improvement in EMW performance is mainly attributed to multiple reflections and scattering as well as impedance matching. This work not only provides a simple and effective strategy for improving electromagnetic wave absorption performance but also offers guidelines for preparing morphology functional cMOF materials.

4.
Front Immunol ; 15: 1259788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426106

RESUMO

Background: Since the global pandemic of COVID-19 has broken out, thousands of pieces of literature on COVID-19 RNA vaccines have been published in various journals. The overall measurement and analysis of RNA vaccines for COVID-19, with the help of sophisticated mathematical tools, could provide deep insights into global research performance and the collaborative architectural structure within the scientific community of COVID-19 mRNA vaccines. In this bibliometric analysis, we aim to determine the extent of the scientific output related to COVID-19 RNA vaccines between 2019 and 2023. Methods: We applied the Bibliometrix R package for comprehensive science mapping analysis of extensive bibliographic metadata retrieved from the Web of Science Core Collection database. On January 11th, 2024, the Web of Science database was searched for COVID-19 RNA vaccine-related publications using predetermined search keywords with specific restrictions. Bradford's law was applied to evaluate the core journals in this field. The data was analyzed with various bibliometric indicators using the Bibliometrix R package. Results: The final analysis included 2962 publications published between 2020 and 2023 while there is no related publication in 2019. The most productive year was 2022. The most relevant leading authors in terms of publications were Ugur Sahin and Pei-Yong, Shi, who had the highest total citations in this field. The core journals were Vaccines, Frontiers in Immunology, and Viruses-Basel. The most frequently used author's keywords were COVID-19, SARS-CoV-2, and vaccine. Recent COVID-19 RNA vaccine-related topics included mental health, COVID-19 vaccines in humans, people, and the pandemic. Harvard University was the top-ranked institution. The leading country in terms of publications, citations, corresponding author country, and international collaboration was the United States. The United States had the most robust collaboration with China. Conclusion: The research hotspots include COVID-19 vaccines and the pandemic in people. We identified international collaboration and research expenditure strongly associated with COVID-19 vaccine research productivity. Researchers' collaboration among developed countries should be extended to low-income countries to expand COVID-19 vaccine-related research and understanding.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacinas de mRNA , SARS-CoV-2 , Bibliometria , RNA
5.
Small ; : e2311511, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319022

RESUMO

The reductive transformation of carbon dioxide (CO2 ) into high-valued N-formamides matches well with the atom economy and the sustainable development intention. Nevertheless, developing a noble-free metal catalyst under mild reaction conditions is desirable and challenging. Herein, a caged metal-organic framework (MOFs) [H2 N(CH3 )2 ]2 {[Ni3 (µ3 -O)(XN)(BDC)3 ]·6DMF}n (1) (XN = 6″-(pyridin-4-yl)-4,2″:4″,4″'-terpyridine), H2 BDC = terephthalic acid) is harvested, presenting high thermal and chemical stabilities. Catalytic investigation reveals that 1 as a renewable noble-free MOFs catalyst can catalyze the CO2 reduction conversion with aromatic amines tolerated by broad functional groups at least ten times, resulting in various formamides in excellent yields and selectivity under the mildest reaction system (room temperature and 1 bar CO2 ). Density functional theory (DFT) theoretical studies disclose the applicable reaction path, in which the CO2 hydrosilylation process is initiated by the [Ni3 ] cluster interaction with CO2 via η2 -C, O coordination mode. This work may open up an avenue to seek high-efficiency noble-free catalysts in CO2 chemical reduction into high value-added chemicals.

6.
Inorg Chem ; 63(7): 3383-3392, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315637

RESUMO

Clenbuterol (CLB) as an illegal feed additive may cause a great security risk to food safety. However, convenient and efficient detection means for CLB in practical application remain a formidable challenge. Herein, a stable Eu-based organic framework {[H2N(CH3)2]2[Eu2(ttca)2]·H2O}n (compound 1) (H4ttca = [1,1':2',1″-terphenyl]-4,4',4″,5'-tetracarboxylic acid) has been harvested, exhibiting excellent chemical stability and thermal stability. Luminescence investigation reveals that compound 1 can sensitively and selectively detect CLB without being affected by different components from simulated serum and urine (limit detection: 22.7 nM). Furthermore, sensor 1 can also be applicable to CLB recognition in real swine feeds, presenting excellent anti-interference performance. The good cyclicity of compound 1 endows CLB determination with many advantages: low cost, high stability, and simplicity. Importantly, in view of the indication of the luminescence color (red to blue), test membranes were fabricated and employed for convenient and fast CLB detection, providing a valuable scheme for the visual monitoring of CLB in meat products. This work enriches rare earth metal compounds and luminescence sensor portfolios and breaks the concentration record (nM) for detecting CLB compared with reported complex materials, providing an effective monitoring platform for CLB visually.


Assuntos
Clembuterol , Animais , Suínos , Luminescência , Tiazolidinas
7.
Chem Commun (Camb) ; 60(15): 1965-1978, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38273804

RESUMO

The rapid development of industry has accelerated the utilization and consumption of fossil energy, resulting in an increasing shortage of energy resources and environmental pollution. Therefore, it is crucial to explore new energy storage devices using renewable and environment-friendly energy as fuel. Direct borohydride fuel cells (DBFCs) are expected to be a feasible and efficient energy storage device by virtue of the read availability of raw materials, non-toxicity of products, and excellent operational stability. Moreover, while utilizing H2O2 as an oxidant, a significant theoretical energy density of 17 kW h kg-1 can be achieved, indicating the broad application prospect of DBFCs in long-range operation and oxygen-free environment. This review summarizes the research progress on DBFCs in term of reaction kinetics, electrode materials, membrane materials, architecture, and electrolytes. In addition, we predict the future research challenges and feasible research directions, considering both performance and cost. We hope this review will help guide future studies on DBFCs.

8.
Dalton Trans ; 53(7): 3167-3179, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38247321

RESUMO

Supercapacitors (SCs) as a kind of novel energy storage devices have emerged to meet the urgent requirement of environmentally friendly clean energy storage equipment. However, unsatisfactory energy density and low operating voltage tremendously restrict their practical application. Herein, petal-like lamellar NiMn-layered double hydroxide (NiMn-LDH) was successfully fabricated through a simple Ni(NO3)2 etching method with Mn MOF-74 as a sacrificial template. This NiMn-LDH 3/NF electrode exhibited an improved specific capacitance of 1410.2 F g-1 at a current density of 1 A g-1 (Mn MOF-74/NF: 172.2) owing to its high redox activity, compositional flexibility and intercalating capability. Importantly, NiMn-LDH was further optimized via a facile hydroperoxide treatment to harvest NiMn-LDH (O-LDH) with abundant oxygen vacancies, exhibiting remarkable improvement in specific capacitance (990%) compared to original MOF-74 before modification. The preparation of O-LDH enriches the electrode material engineering strategy and achieves improved electrochemical performance for application in new-generation SCs.

9.
Front Neurol ; 14: 1189076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090272

RESUMO

Introduction: Insomnia is the most common form of sleep deprivation (SD) observed in clinics. Although there are differences between insomnia and SD, they have similar symptoms and the same animal model. Currently, there is a lack of microarray data on insomnia. Therefore, for now, we are going to apply the SD data to insomnia. Although many studies have explained the possible mechanisms associated with insomnia, no previous studies have considered the key genes associated with insomnia or the relationship between insomnia and immune cells. In this study, we analyzed the relationship between key genes and immune cells by identifying biomarkers for the diagnosis of insomnia. Next, we verified the efficacy of these biomarkers experimentally. Methods: First, we downloaded four microarrays (GSE11755, GSE12624, GSE28750, and GSE48080) from the Gene Expression Omnibus (GEO) database, which included data from 239 normal human blood samples and 365 blood specimens from patients with SD. Then, we analyzed two groups of differentially expressed genes (DEGs) and used Support Vector Machine Recursive Feature Elimination (SVM-RFE) analysis and the Least Absolute Shrinkage and Selection Operator (LASSO) regression model to investigate these key genes. Next, we used CIBERSORT to investigate the composition of 22 immune cell components of key genes in SD patients. Finally, the expression levels of key biomarkers in sleep-deprived patients were examined by quantitative real-time polymerase chain reaction (qRT-PCR). Results: A total of 50 DEGs were identified: six genes were significantly upregulated, and 44 genes were significantly downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that Salmonella infection, NOD-like receptor (NLR) signaling pathway, Kaposi sarcoma-associated herpesvirus infection, and Th17 cell differentiation were significant. Based on machine learning, we identified C2CD2L, SPINT2, APOL3, PKNOX1, and A2M as key genes for SD; these were confirmed by receiver operating characteristic (ROC) analysis. Immune cell infiltration analysis showed that C2CD2L, SPINT2, APOL3, PKNOX1, and A2M were related in different degrees to regulatory T cells (Tregs), follicular T helper cells, CD8 cells, and other immune cells. The qRT-PCR experiments confirmed that the expression levels of C2CD2L concurred with the results derived from machine learning, but PKNOX1 and APOL3 did not. Discussion: In summary, we identified a key gene (C2CD2L) that may facilitate the development of biomarkers for insomnia.

10.
ChemSusChem ; : e202301386, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953461

RESUMO

Lithium-ion batteries (LIBs) with high energy density, long cycle life and safety have earned recognition as outstanding energy storage devices, and have been used in extensive applications, such as portable electronics and new energy vehicles. However, traditional graphite anodes deliver low specific capacity and inferior rate performance, which is difficult to satisfy ever-increasing demands in LIBs. Very recently, two-dimensional metal phosphides (2D MPs) emerge as the cutting-edge materials in LIBs due to their overwhelming advantages including high theoretical capacity, excellent conductivity and short lithium diffusion pathway. This review summarizes the up-to-date advances of 2D MPs from typical structures, main synthesis methods and LIBs applications. The corresponding lithium storage mechanism, and relationship between 2D structure and lithium storage performance is deeply discussed to provide new enlightening insights in application of 2D materials for LIBs. Several potential challenges and inspiring outlooks are highlighted to provide guidance for future research and applications of 2D MPs.

11.
Dalton Trans ; 52(46): 17470-17476, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37953713

RESUMO

The electrochemical nitrate reduction reaction (ENO3RR) is a green ammonia synthesis method under ambient conditions relative to the traditional Haber-Bosch technology, which does not require high-temperature or high-pressure conditions and can convert nitrate pollutants in the environment into value-added NH3, thus achieving a dual purpose. However, more electrocatalysts with a remarkable performance towards high-efficiency ENO3RR need to be developed. In this work, a Cu/NiO-NF composite electrocatalyst with a nanorod structure on nickel foam was successfully fabricated, which contains heterogeneous interfaces between Cu and NiO toward selective electrocatalytic nitrate reduction for ammonia synthesis. The steric nanorod morphology of the catalyst can significantly increase the surface area, expose more active sites, and improve the reaction activity. Moreover, the construction of the composite and the interface effectively boosts the synergistic effect of the active species Cu and NiO, which can regulate the electronic structure of the catalyst, expose more active sites, enhance the conductivity of the material, and accelerate the interfacial electron transfer, thereby further promoting the ENO3RR performance. This Cu/NiO-NF composite exhibits a high NH3 yield of 0.6 mmol h-1 cm-2 and up to 97.81% faradaic efficiency at the optimal applied potential of -1.0 V (vs. RHE) in a concentration of 0.1 M NO3--containing 0.1 M PBS. Furthermore, it demonstrates excellent electrochemical cycle stability. This work provides insights into the rational design and fabrication of ENO3RR electrocatalysts for potential electrocatalytic applications.

12.
Small ; : e2308024, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992243

RESUMO

Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier-selective contacts, enable sputter processing, and prevent humidity ingress toward high-performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD-SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2 ) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%.

13.
Inorg Chem ; 62(33): 13338-13347, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599583

RESUMO

Oxygen evolution reaction (OER) is a limiting reaction for highly efficient water electrolysis. Thus, the development of cost-effective and highly efficient OER catalysts is the key to large-scale water electrolysis for hydrogen production. Herein, by using an interfacial engineering strategy, a unique nanoflower-like Fe1-xNix(PO3)2/Ni2P/NF heterostructure with abundant heterogeneous interfaces is successfully fabricated. The catalyst exhibits excellent OER catalytic activity in alkaline fresh water and alkaline natural seawater at high current densities, which only, respectively, requires overpotentials of 318 and 367 mV to drive 1000 mA cm-2 in fresh water and natural seawater both containing 1 M KOH. Furthermore, Fe1-xNix(PO3)2/Ni2P/NF demonstrates excellent durability, which can basically remain stable for 80 h during the electrocatalytic OER processes, respectively, in alkaline fresh water and natural seawater. This work provides a new construction strategy for designing highly efficient electrocatalysts for OER at high current densities both in alkaline fresh water and in natural seawater.

14.
Adv Mater ; 35(42): e2303139, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37493870

RESUMO

Exploring strategies to control the crystallization and modulate interfacial properties for high-quality perovskite film on industry-relevant textured crystalline silicon solar cells is highly valued in the perovskite/silicon tandem photovoltaics community. The formation of a 2D/3D perovskite heterojunction is widely employed to passivate defects and suppress ion migration in the film surface of perovskite solar cells. However, realizing solution-processed heterostructures at the buried interface faces solvent incompatibilities with the challenge of underlying-layer disruption, and texture incompatibilities with the challenge of uneven coverage. Here, a hybrid two-step deposition method is used to prepare robust 2D perovskites with cross-linkable ligands underneath the 3D perovskite. This structurally coherent interlayer benefits by way of preferred crystal growth of strain-free and uniform upper perovskite, inhibits interfacial defect-induced instability and recombination, and promotes charge-carrier extraction with ideal energy-level alignment. The broad applicability of the bottom-contact heterostructure for different textured substrates with conformal coverage and various precursor solutions with intact properties free of erosion are demonstrated. With this buried interface engineering strategy, the resulting perovskite/silicon tandem cells, based on industrially textured Czochralski (CZ) silicon, achieve a certified efficiency of 28.4% (1.0 cm2 ), while retaining 89% of the initial PCE after over 1000 h operation.

15.
Front Immunol ; 14: 1087691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449204

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by bacteria and other pathogenic microorganisms. Every year, approximately 31.5 million patients are diagnosed with sepsis, and approximately 5.3 million patients succumb to the disease. In this study, we identified biomarkers for diagnosing sepsis analyzed the relationships between genes and Immune cells that were differentially expressed in specimens from patients with sepsis compared to normal controls. Finally, We verified its effectiveness through animal experiments. Specifically, we analyzed datasets from four microarrays(GSE11755、GSE12624、GSE28750、GSE48080) that included 106 blood specimens from patients with sepsis and 69 normal human blood samples. SVM-RFE analysis and LASSO regression model were carried out to screen possible markers. The composition of 22 immune cell components in patients with sepsis were also determined using CIBERSORT. The expression level of the biomarkers in Sepsis was examined by the use of qRT-PCR and Western Blot (WB). We identified 50 differentially expressed genes between the cohorts, including 2 significantly upregulated and 48 significantly downregulated genes, and KEGG pathway analysis identified Salmonella infection, human T cell leukemia virus 1 infection, Epstein-Barr virus infection, hepatitis B, lysosome and other pathways that were significantly enriched in blood from patients with sepsis. Ultimately, we identified COMMD9, CSF3R, and NUB1 as genes that could potentially be used as biomarkers to predict sepsis, which we confirmed by ROC analysis. Further, we identified a correlation between the expression of these three genes and immune infiltrate composition. Immune cell infiltration analysis revealed that COMMD9 was correlated with T cells regulatory (Tregs), T cells follicular helper, T cells CD8, et al. CSF3R was correlated with T cells regulatory (Tregs), T cells follicular helper, T cells CD8, et al. NUB1 was correlated with T cells regulatory (Tregs), T cells gamma delta, T cells follicular helper, et al. Taken together, our findings identify potential new diagnostic markers for sepsis that shed light on novel mechanisms of disease pathogenesis and, therefore, may offer opportunities for therapeutic intervention.


Assuntos
Infecções por Vírus Epstein-Barr , Sepse , Animais , Humanos , Herpesvirus Humano 4 , Sepse/diagnóstico , Sepse/genética , Biomarcadores , Biologia Computacional , Aprendizado de Máquina , Proteínas Adaptadoras de Transdução de Sinal
16.
Dalton Trans ; 52(29): 10222-10230, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436096

RESUMO

Solid-state electrolytes (SSEs) are a frontier topic in battery technology with the potential to solve the safety problem of lithium ion batteries (LIBs). Metal organic frameworks (MOFs) are regarded as promising candidates for a new type of solid-state ion conductor, but the low ionic conductivity and unstable interface contact still seriously hinder the application of MOF based solid state electrolytes (SSEs). Herein, a HKUST-1 based solid-state electrolyte (SSE) was designed and prepared, which possess both a flower-like lamellar structure and sufficient accessible open metal sites (OMSs). These sites could capture anions and release free lithium ions (Li+), and the ultra-thin thickness shortened the Li+ transmission path. The lamellar HKUST-1 exhibits an ionic conductivity of 1.6 × 10-3 S cm-1 at 25 °C with an activation energy of 0.12 eV, Li-ion transference number of 0.73 and electrochemical stability window of 0-5.5 V. The MOF based electrolyte has been assessed with Li|MOFs|LiFePO4 cells at 25 °C, which showed a high capacity retention of 93% at 0.1C after 100 cycles and excellent rate capability. It also exhibited excellent cycle stability in Li symmetric cells. This Li+ conduction strategy of modulating the morphology and modifying pore walls provides a new research idea for designing advanced SSEs.

17.
J Colloid Interface Sci ; 650(Pt B): 1211-1224, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478738

RESUMO

Hydrogen (H2) evolution by photocatalytic water splitting is a potential strategy to solve worldwide energy shortage. Sulfide nanocatalysts showed great potential for H2 evolution, but suffered from low charge separation efficiency and easy agglomeration. In this work, ZnIn2S4 (ZIS) nanoflowers were anchored onto the surface of halloysite nanotubes (HNTs) modified by ethylenediaminetetraacetic acid (EDTA). Photocatalyst 3ZnIn2S4-HNTs/EDTA3 (3ZIS-HNTs/E3) displayed the optimum H2 evolution rate of 10.4 mmol·g-1·h-1, being 3.4 times as that of the original ZIS. Moreover, 3ZIS-HNTs/E3 presented satisfied property in the photocatalytic hydrogenation reaction of 4-nitrophenol to produce 4-aminophenol. HNTs as substrates not only hindered the growth and agglomeration of ZIS, but also induced more S vacancies in ZIS. The production of Schottky junctions between ZIS and Pt, the high utilization of light energy in tubular HNTs, and the trapping effect of EDTA for photogenerated h+ were all favorable for enhancing the catalytic property. The density functional theory (DFT) calculations showed that 3ZIS-HNTs/E3 with more S vacancies had the lowest adsorption energy and the most appropriate ΔGH* for H* to enhance the H2 evolution efficiency, which was consistent with the experimental catalytic results. This study contributes a novel thought for synthesizing composites on the basis of natural minerals for taking part in and enhancing the catalytic performance.

18.
Front Cell Infect Microbiol ; 13: 1167312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377643

RESUMO

Fructus gardeniae (FG) is a traditional Chinese medicine and health food for thousands of years of application throughout Chinese history and is still widely used in clinical Chinese medicine. FG has a beneficial impact on anxiety, depression, insomnia, and psychiatric disorders; however, its mechanism of action requires further investigation. This study aimed to investigate the effects and mechanisms of FG on sleep deprivation (SD)-induced anxiety-like behavior in rats. A model of SD-induced anxiety-like behavior in rats was established by intraperitoneal injection of p-chlorophenylalanine (PCPA). This was accompanied by neuroinflammation and metabolic abnormalities in the hippocampus and disturbance of intestinal microbiota. However reduced SD-induced anxiety-like behavior and decreased levels of pro-inflammatory cytokines including TNF-α and IL-1ß were observed in the hippocampus of rats after 7 days of FG intervention. In addition, metabolomic analysis demonstrated that FG was able to modulate levels of phosphatidylserine 18, Phosphatidylinositol 18, sn-glycero-3-phosphocholine, deoxyguanylic acid, xylose, betaine and other metabolites in the hippocampus. The main metabolic pathways of hippocampal metabolites after FG intervention involve carbon metabolism, glycolysis/gluconeogenesis, pentose phosphate, and glycerophospholipid metabolism. 16S rRNA sequencing illustrated that FG ameliorated the dysbiosis of gut microbiota in anxious rats, mainly increased the abundance of Muribaculaceae and Lactobacillus, and decreased the abundance of Lachnospiraceae_NK4A136_group. In addition, the correlation analysis demonstrated that there was a close relationship between hippocampal metabolites and intestinal microbiota. In conclusion, FG improved the anxiety behavior and inhibited of neuroinflammation in sleep-deprived rats, and the mechanism may be related to the FG regulation of hippocampal metabolites and intestinal microflora composition.


Assuntos
Gardenia , Microbioma Gastrointestinal , Ratos , Animais , Gardenia/genética , Privação do Sono , Doenças Neuroinflamatórias , RNA Ribossômico 16S/genética , Metabolômica , Hipocampo , Ansiedade/tratamento farmacológico
19.
Inorg Chem ; 62(19): 7525-7532, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37133541

RESUMO

Electrocatalytic nitrate reduction reaction (ENO3RR) is an alternative, sustainable, and environmentally friendly value-added NH3 synthesis method under ambient conditions relative to the traditional Haber-Bosch process; however, its low NH3 yield, low Faradaic efficiency (FE), low selectivity, and low conversion rate severely restrict the development. In this work, a Cu2+1O/Ag-CC heterostructured electrocatalyst was successfully fabricated by constructing a heterogeneous interface between Cu2+1O and Ag for selective electrochemical nitrate-to-ammonia conversion. The construction of the heterogeneous interface effectively promotes the synergistic effect of the catalytically active components Cu2+1O and Ag, which enhances the material conductivity, accelerates the interfacial electron transfer, and exposes more active sites, thus improving the performance of ENO3RR. Such Cu2+1O/Ag-CC manifests a high NH3 yield of 2.2 mg h-1 cm-2 and a notable ammonia FE of 85.03% at the optimal applied potential of -0.74 V vs RHE in a relatively low concentration of 0.01 M NO3--containing 0.1 M KOH. Moreover, it shows excellent electrochemical stability during the cycle tests. Our study not only provides an efficient catalyst for ammonia electro-synthesis from ENO3RR but also an effective strategy for the construction of ENO3RR electrocatalysts for electrocatalytic applications.

20.
Inorg Chem ; 62(21): 8285-8292, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37184903

RESUMO

MOF ferroelectrics, as a crucial member of molecular ferroelectrics, have shown intriguing advantages owing to the designability of structures and tunability of physicochemical properties, which make them an appealing group of ferroelectric materials. However, the weak ferroelectric property still is a huge challenge for further development. Here, a series of Zr-doped MOF-802(Hf)s were successfully synthesized through doping Zr4+ ions into the parent MOF-802(Hf) to improve ferroelectric properties. The well-shaped P-E hysteresis loops of Zr-doped MOF-802(Hf)s illustrate their ferroelectricity, and ferroelectric properties are effectively enhanced compared with the parent MOF-802(Hf). What's more, remanent polarization reaches 0.511 µC/cm2 when the concentration of Zr4+ ions is 5%, which is 5 times higher than that of the parent MOF-802(Hf) and is on par with some perovskite ferroelectrics. The increased ferroelectric performance is attributed to the enhanced polarity of the whole structure triggered by lattice distortion when Hf4+ ions of the parent MOF-802(Hf) are substituted by Zr4+ ions. As far as we know, this is the first report on Hf-MOF exhibiting improved ferroelectric behaviors through doping metal ions into lattice nodes. This work demonstrates that introducing the second metal ions into lattice nodes of MOFs is an efficacious approach for exploiting MOF ferroelectrics with superior performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...